Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Production of recombinant salmon insulin-like growth factor binding protein-1 subtypes.

Insulin-like growth factor (IGF)-I is a growth promoting hormone that exerts its actions through endocrine, paracrine and autocrine modes. Local IGF-I is essential for normal growth, whereas circulating IGF-I plays a crucial role in regulating the production and secretion of growth hormone (GH) by the pituitary gland. These actions of IGF-I are modulated by six insulin-like growth factor binding proteins (IGFBPs). In teleosts, two subtypes of each IGFBP are present due to an extra round of whole-genome duplication. IGFBP-1 is generally inhibitory to IGF-I action under catabolic conditions such as fasting and stress. In salmon, IGFBP-1a and -1b are two of three major circulating IGFBPs and assumed to affect growth through modulating IGF-I action. However, exact functions of salmon IGFBP-1 subtypes on growth regulation are not known due to the lack of purified or recombinant protein. We expressed recombinant salmon (rs) IGFBP-1a and -1b with a fusion protein (thioredoxin, Trx) and a His-tag using the pET-32a(+) vector expression system in Escherichia coli. Trx.His.rsIGFBP-1s were isolated by Ni-affinity chromatography, enzymatically cleaved by enterokinase to remove the fusion partners and further purified by reversed-phase HPLC. We next examined effects of rsIGFBP-1a and -1b in combination with human IGF-I on GH release from cultured masu salmon (Oncorhynchus masou) pituitary cells. Unexpectedly, IGF-I increased GH release and an addition of rsIGFBP-1a, but not rsIGFBP-1b, restored GH levels. The results suggest that IGFBP-1a can inhibit IGF-I action on the pituitary in masu salmon. Availability of recombinant salmon IGFBP-1s should facilitate further functional analyses and assay development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app