JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

GAS5 suppresses malignancy of human glioma stem cells via a miR-196a-5p/FOXO1 feedback loop.

Glioma stem cells (GSCs) make up highly tumorigenic subpopulations within gliomas, and aberrant expression of GSC genes is a major underlying cause of glioma pathogenesis and treatment failure. The present study characterized the expression and function of long non-coding RNA growth arrest specific 5 (GAS5) in GSCs in order to elucidate the molecular mechanisms by which GAS5 contributes to glioma pathogenesis. We demonstrate that GAS5 suppresses GSC malignancy by binding to miR-196a-5p. miR-196a-5p, an onco-miRNA, stimulates GSC proliferation, migration, and invasion, in addition to reducing levels of apoptosis. miR-196a-5p specifically downregulates the expression of forkhead box protein O1 (FOXO1) by targeting its 3' untranslated region (3'-UTR). FOXO1 upregulates expression of phosphotyrosine interaction domain containing 1 (PID1), thereby inhibiting GSC tumorigenicity and growth. FOXO1 also upregulates migration and invasion inhibitory protein (MIIP), resulting in attenuation of migration and invasion activities. Interestingly, we also show that FOXO1 promotes GAS5 transcription, thus forminga positive feedback loop. These data provide insights into potential new pathways for GSC molecular therapy and suggest that GAS5 may be an efficacious target for glioma treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app