JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Spontaneous membrane insertion of a dengue virus NS2A peptide.

Non-structural NS2A protein of Dengue virus is essential for viral replication but poorly characterized because of its high hydrophobicity. We have previously shown experimentally that NS2A possess a segment, peptide dens25, known to insert into membranes and interact specifically with negatively-charged phospholipids. To characterize its membrane interaction we have used two types of molecular dynamics membrane model systems, a highly mobile membrane mimetic (HMMM) and an endoplasmic reticulum (ER) membrane-like model. Using the HMMM system, we have been able of demonstrating the spontaneous binding of dens25 to the negatively-charged phospholipid 1,2-divaleryl-sn-glycero-3-phosphate containing membrane whereas no binding was observed for the membrane containing the zwitterionic one 1,2-divaleryl-sn-glycero-3-phosphocholine. Using the ER-like membrane model system, we demonstrate the spontaneous insertion of dens25 into the middle of the membrane, it maintained its three-dimensional structure and presented a nearly parallel orientation with respect to the membrane surface. Both charged and hydrophobic amino acids, presenting an interfacial/hydrophobic pattern characteristic of a membrane-proximal segment, are responsible for membrane binding and insertion. Dens25 might control protein/membrane interaction and be involved in membrane rearrangements critical for the viral cycle. These data should help us in the development of inhibitor molecules that target NS2A segments involved in membrane reorganisation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app