Add like
Add dislike
Add to saved papers

Prediction of new Hsp90 inhibitors based on 3,4-isoxazolediamide scaffold using QSAR study, molecular docking and molecular dynamic simulation.

BACKGROUND: Heat shock protein90 (Hsp90) are overexpressed in tumor cells, so the inhibition of the Hsp90 ATPase activity would be a significantly effective strategy in cancer therapy.

METHODS: In the current study, 3,4-isoxazolediamide derivatives were suggested as an Hsp90 inhibitor for anti-cancer therapy. Multiple linear regression (MLR) and genetic algorithm of partial least square (GA-PLS) methods were performed to build models to predict the inhibitory activity of Hsp90. The leave-one out (LOO) cross-validation and Y-randomization tests were performed to models' validation. The new ligands were monitored by applicability domain. Molecular docking studies were also conducted to evaluate the mode of interaction of these compounds with Hsp90. Identification of the likely pathways into the active site pocket and the involved residues were performed by CAVAER 3.0.1 software. According to QSAR models and docking analysis, three new compounds were predicted. 50 ns molecular dynamic simulation was performed for the strongest synthesized compound and the best predicted compound in terms of binding energy and interactions between ligand and protein.

RESULTS: The made models showed the significance of size, shape, symmetry, and branching of molecules in inhibitory activities of Hsp90. Docking studies indicated that two hydroxyl groups in the resorcinol ring were important in interacting with Asp93 and the orientation of these groups was related to substitution of different R1 groups. Comparing of molecular dynamic simulation (MDs) results shows that new compound perched in active site with lower binding energy than the best synthesized compound.

CONCLUSION: The QSAR and docking analyses shown to be beneficial tools in the proposal of anti-cancer activities and a leader to the synthesis of new Hsp90 inhibitors based 3,4-isoxazolediamide. The MDs confirmed that predicted ligand is steady in the Hsp90 active sites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app