Add like
Add dislike
Add to saved papers

The SERTAD protein Taranis plays a role in Polycomb-mediated gene repression.

The Polycomb group (PcG) proteins have been implicated in epigenetic transcriptional repression in development, stem cell maintenance and in cancer. The chromodomain protein Polycomb (Pc) is a key member of the PcG. Pc binds to the histone mark, trimethylated histone 3 lysine 27 (H3K27me3), to initiate transcriptional repression. How PcG proteins are recruited to target loci is not fully understood. Here we show that the Drosophila SERTA domain protein Taranis (Tara) is involved in transcriptional regulation of Pc target genes. Embryos lacking Tara exhibit a partial homeotic transformation of cuticular the segments, a phenotype associated with the loss of Pc function. Moreover, Drosophila embryos homozygous for a tara hypomorphic allele also misexpress engrailed, a Pc-regulated gene, and this phenotype is associated with the loss of Pc binding to the cis response element in the engrailed enhancer. In relation to that, Pc recruitment is reduced on the salivary gland polytene chromosomes and specifically at the engrailed locus. These results suggest that Tara might be required for positioning Pc to a subset of its target genes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app