JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Geometric Phase Effects in Nonadiabatic Dynamics near Conical Intersections.

Dynamical consideration that goes beyond the common Born-Oppenheimer approximation (BOA) becomes necessary when energy differences between electronic potential energy surfaces become small or vanish. One of the typical scenarios of the BOA breakdown in molecules beyond diatomics is a conical intersection (CI) of electronic potential energy surfaces. CIs provide an efficient mechanism for radiationless electronic transitions: acting as "funnels" for the nuclear wave function, they enable rapid conversion of the excessive electronic energy into the nuclear motion. In addition, CIs introduce nontrivial geometric phases (GPs) for both electronic and nuclear wave functions. These phases manifest themselves in change of the wave function signs if one considers an evolution of the system around the CI. This sign change is independent of the shape of the encircling contour and thus has a topological character. How these extra phases affect nonadiabatic dynamics is the main question that is addressed in this Account. We start by considering the simplest model providing the CI topology: two-dimensional two-state linear vibronic coupling model. Selecting this model instead of a real molecule has the advantage that various dynamical regimes can be easily modeled in the model by varying parameters, whereas any fixed molecule provides the system specific behavior that may not be very illustrative. After demonstrating when GP effects are important and how they modify the dynamics for two sets of initial conditions (starting from the ground and excited electronic states), we give examples of molecular systems where the described GP effects are crucial for adequate description of nonadiabatic dynamics. Interestingly, although the GP has a topological character, the extent to which accounting for GPs affect nuclear dynamics profoundly depends on topography of potential energy surfaces. Understanding an extent of changes introduced by the GP in chemical dynamics poses a problem of capturing GP effects by approximate methods of simulating nonadiabatic dynamics that can go beyond simple models. We assess the performance of both fully quantum (wave packet dynamics) and quantum-classical (surface-hopping, Ehrenfest, and quantum-classical Liouville equation) approaches in various cases where GP effects are important. It has been identified that the key to success in approximate methods is a method organization that prevents the quantum nuclear kinetic energy operator to act directly on adiabatic electronic wave functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app