Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Monolithic OLED-Microwire Devices for Ultrastrong Magnetic Resonant Excitation.

Nano Letters 2017 August 10
Organic light-emitting diodes (OLEDs) make highly sensitive probes to test magnetic resonance phenomena under unconventional conditions since spin precession controls singlet-triplet transitions of electron-hole pairs, which in turn give rise to distinct recombination currents in conductivity. Electron paramagnetic resonance can therefore be detected in the absence of spin polarization. We exploit this characteristic to explore the exotic regime of ultrastrong light-matter coupling, where the Rabi frequency of a charge carrier spin is of the order of the transition frequency of the two-level system. To reach this domain, we have to lower the Zeeman splitting of the spin states, defined by the static magnetic field B0 , and raise the strength of the oscillatory driving field of the resonance, B1 . This is achieved by shrinking the OLED and bringing the source of resonant radio frequency (RF) radiation as close as possible to the organic semiconductor in a monolithic device structure, which incorporates an OLED fabricated directly on top of an RF microwire within one monolithic thin-film device structure. With an RF driving power in the milliwatt range applied to the microwire, the regime of bleaching and inversion of the magnetic resonance signal is reached due to the onset of the spin-Dicke effect. In this example of ultrastrong light-matter coupling, the individual resonant spin transitions of electron-hole pairs become indistinguishable with respect to the driving field, and superradiance of the magnetic dipole transitions sets in.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app