Add like
Add dislike
Add to saved papers

Boosting Photocatalytic Performance of Inactive Rutile TiO 2 Nanorods under Solar Light Irradiation: Synergistic Effect of Acid Treatment and Metal Oxide Co-catalysts.

In the present work, we accomplish the boosting of photocatalytic performance by the synergistic effect of acid treatment and transition metal oxide co-catalysts on molten salt rutile TiO2 nanorods. FT-IR and XPS (oxygen deconvolution) results confirmed that the amount of hydroxyl groups increased on the surface of rutile TiO2 nanorods (TO-NRs) after acid treatment. HR-TEM analysis revealed fine dispersion of metal oxide on the surface of acid treated TiO2 nanorods (ATO-NRs). The photocatalytic activities of as-prepared (TO-NRs), acid treated (ATO-NRs), metal oxide loaded (MTO-NRs), and both acid treated and metal oxide loaded (MATO-NRs) nanorods were compared based on the rate kinetics and dye degradation efficiencies. Cobalt oxide (1 wt %) loaded and 1.0 M acid treated TiO2 nanorods (Co/ATO-NR) exhibited the higher photocatalytic degradation efficiency for Orange-II dye degradation and inactivation of S. typhimurium pathogen compared to other photocatalysts under solar irradiation. Photoelectrochemical analysis demonstrated that the charge transfer process in Co/ATO-NR is significantly higher than that in the untreated samples. The improved photocatalytic activity of inactive TO-NRs might be due to enhanced charge transfer of finely dispersed metal oxides on the OH-rich surface of acid treated TiO2 nanorods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app