Add like
Add dislike
Add to saved papers

AWE-somes: All Water Emulsion Bodies with Permeable Shells and Selective Compartments.

Living cells exploit compartmentalization within organelles to spatially and temporally control reactions and pathways. Here, we use the all aqueous two phase system (ATPS) of poly(ethylene glycol) (PEG) and dextran to develop all water emulsion bodies, AWE-somes, a new class of encapsulated double emulsions as potential cell mimics. AWE-somes feature rigid polyelectrolyte (PE)/nanoparticle (NP) shells and double emulsion interiors. The shells form via complexation of PE and NP at interfaces of ATPS. The NPs, excluded from the drop phase, create an osmotic stress imbalance that removes water from the encapsulated phase and draws droplets of external PEG phase into the shells to form the double emulsion interior. We demonstrate that molecules can permeate the AWE-some shells, selectively partition into the internal droplets, and undergo reaction. AWE-somes have significant potential for creating functional, biocompatible protocell systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app