Add like
Add dislike
Add to saved papers

Analysis of Interfacial Layer-Induced Open-Circuit Voltage Burn-In Loss in Polymer Solar Cells on the Basis of Electroluminescence and Impedance Spectroscopy.

Stable and robust open-circuit voltage (VOC ) is essential to achieve a long lifetime for polymer solar cells (PSCs). Here, we investigate the VOC burn-in loss mechanism on the basis of the analysis of electroluminescence quantum efficiency (EQEEL ) and impedance measurements in amorphous PSCs, with an inverted structure having different electron transport layers (ETLs) of ZnO nanoparticles (NPs) and the sol-gel processed ZnO layer. We found that both charge recombination and energetic disorder account for a substantial proportion of the VOC burn-in loss. Moreover, varying the ETL significantly affected the degree of VOC burn-in loss, although relative contribution of these two factors remained constant. To accurately extract charge recombination-induced VOC loss, we applied a novel yet effective method that relates the EQEEL of PSCs to charge recombination-induced VOC loss. Additional analyses, including those focused on light intensity (Plight )-dependent VOC and density of states, will provide an inclusive perspective on the degradation mechanism of VOC and development of stable PSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app