Add like
Add dislike
Add to saved papers

Cobalt Phosphonates as Precatalysts for Water Oxidation: Role of Pore Size in Catalysis.

We report a simple approach for the synthesis of cobalt phosphonate (CoOP) nanocages with two distinct types of pore diameters by utilizing a novel tetra-constituent assembly of CoCl2 ⋅6 H2 O, nitrilotris(methylene)triphosphonic acid (NMPA), F127 surfactant, and polyvinyl alcohol (PVA, co-surfactant). Transmission electron microscopy images revealed the formation of large nanocages in spheres (pore diameter: 20-60 nm) and the existence of narrow micro/mesopores (pore diameter: 1.5-5 nm) on their walls. Brunauer-Emmett-Teller adsorption/desorption experiments led to the observation of dual porosity and indicated that the contribution of micro/mesopores increased gradually with increasing concentration of PVA during synthesis from CoOP-0 to CoOP-15 (where the number gives the wt % of PVA used in CoOP synthesis). These materials acted as precatalysts for heterogeneous water oxidation at pH 13.9 (1 m KOH) and electrochemical studies revealed that the reactivity improved remarkably with increasing contribution of narrow micro/mesopores. Among these catalysts, the best catalyst (CoOP-15) exhibited an overpotential of 380 mV and turnover frequency of 1.6×10-2  s-1 . The improvement of reactivity was due to significant enhancement of electrochemically accessible surface area with increasing contribution of narrow micro/mesopores, which facilitated contact between the catalyst and water molecules by improving mass transport inside the nanomaterials. Hence, this study suggests narrow micro/mesopores are beneficial towards enhancement of water oxidation catalysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app