Add like
Add dislike
Add to saved papers

A stoichiometric organic matter decomposition model in a chemostat culture.

Biodegradation, the disintegration of organic matter by microorganism, is essential for the cycling of environmental organic matter. Understanding and predicting the dynamics of this biodegradation have increasingly gained attention from the industries and government regulators. Since changes in environmental organic matter are strenuous to measure, mathematical models are essential in understanding and predicting the dynamics of organic matters. Empirical evidence suggests that grazers' preying activity on microorganism helps to facilitate biodegradation. In this paper, we formulate and investigate a stoichiometry-based organic matter decomposition model in a chemostat culture that incorporates the dynamics of grazers. We determine the criteria for the uniform persistence and extinction of the species and chemicals. Our results show that (1) if at the unique internal steady state, the per capita growth rate of bacteria is greater than the sum of the bacteria's death and dilution rates, then the bacteria will persist uniformly; (2) if in addition to this, (a) the grazers' per capita growth rate is greater than the sum of the dilution rate and grazers' death rate, and (b) the death rate of bacteria is less than some threshold, then the grazers will persist uniformly. These conditions can be achieved simultaneously if there are sufficient resources in the feed bottle. As opposed to the microcosm decomposition models' results, in a chemostat culture, chemicals always persist. Besides the transcritical bifurcation observed in microcosm models, our chemostat model exhibits Hopf bifurcation and Rosenzweig's paradox of enrichment phenomenon. Our sensitivity analysis suggests that the most effective way to facilitate degradation is to decrease the dilution rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app