Add like
Add dislike
Add to saved papers

Application of linear mixed-effects model with LASSO to identify metal components associated with cardiac autonomic responses among welders: a repeated measures study.

BACKGROUND: Environmental and occupational exposure to metals is ubiquitous worldwide, and understanding the hazardous metal components in this complex mixture is essential for environmental and occupational regulations.

OBJECTIVE: To identify hazardous components from metal mixtures that are associated with alterations in cardiac autonomic responses.

METHODS: Urinary concentrations of 16 types of metals were examined and 'acceleration capacity' (AC) and 'deceleration capacity' (DC), indicators of cardiac autonomic effects, were quantified from ECG recordings among 54 welders. We fitted linear mixed-effects models with least absolute shrinkage and selection operator (LASSO) to identify metal components that are associated with AC and DC. The Bayesian Information Criterion was used as the criterion for model selection procedures.

RESULTS: Mercury and chromium were selected for DC analysis, whereas mercury, chromium and manganese were selected for AC analysis through the LASSO approach. When we fitted the linear mixed-effects models with 'selected' metal components only, the effect of mercury remained significant. Every 1 µg/L increase in urinary mercury was associated with -0.58 ms (-1.03, -0.13) changes in DC and 0.67 ms (0.25, 1.10) changes in AC.

CONCLUSION: Our study suggests that exposure to several metals is associated with impaired cardiac autonomic functions. Our findings should be replicated in future studies with larger sample sizes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app