JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Skewed X-chromosome inactivation and XIST locus methylation levels do not contribute to the lower prevalence of Parkinson's disease in females.

Neurobiology of Aging 2017 September
Parkinson's disease (PD) is a degenerative disorder of the nervous system and the cause of the majority of sporadic cases is unknown. Females are relatively protected from PD as compared with males and linkage studies suggested a PD susceptibility locus on the X chromosome. To determine a putative association of skewed X-chromosome inactivation (XCI) and PD, we examined XCI patterns using a human androgen receptor gene-based assay (HUMARA) and did not identify any association of skewed or random X inactivation with clinical heterogeneity among female PD patients. In addition, we sought to determine methylation-specific changes at the X-inactive specific transcript (XIST) locus, which is known to be responsible for initiating X inactivation. We observed a trend towards hypomethylation in the gene body region of the XIST locus in PD females which did not reach significance. Furthermore, we extended our analysis of DNA methylation across the entire X-chromosome which revealed no methylation-specific differences between PD females and healthy controls. Thus, we propose that skewed XCI and methylation levels on the entire X chromosome did not reveal changes which could account for the decreased PD susceptibility in females or suitable to use as a biomarker.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app