Add like
Add dislike
Add to saved papers

Rapid degradation of FOG discharged from food industry wastewater by lipolytic fungi as a bioaugmentation application.

Fats, oils and grease (FOG) congregate in grease traps and are a slowly biodegradable particulate organic matter, which may require enzymatic or hydrolytic conversion to form readily biodegradable soluble organic matter. The existing treatment methods employ water-based hydrolysis of FOG to form long-chain fatty acids (LCFAs). The LCFAs discharged into wastewater treatment system create functional difficulties, especially the inhibitory effect caused by accumulation of LCFAs. This study aims to find an effective treatment method for this persistent problem encountered in conventional wastewater treatment system. Solid-state degradation by lipolytic fungi was performed in a tray-type reactor as a novel approach of bioaugmentation. Grease trap waste samples were dried to have moisture content of 25-35% and mixed with coir fiber (1% w/v) for proper aeration. Each 10 mg/g dry weight of substrate was inoculated with 1 mL of spore suspension (1 × 10⁷ spores/mL) of lipolytic fungi. Thereafter, moisture content in the reactor was increased to 65%, and incubated at 30°C. Within 72 h of post incubation, degradation efficiency of about 50% was recorded by fungal isolates. The feasibility of using developed protocol for FOG degradation was tested with a laboratory-scale prototype reactor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app