Add like
Add dislike
Add to saved papers

Viable but non-culturable E. coli induced by low level chlorination have higher persistence to antibiotics than their culturable counterparts.

Disinfectant used in drinking water treatment and distribution system can induce culturable bacteria, including various kinds of pathogenic bacteria, into viable but non-culturable (VBNC) state. The loss of cultural state, resuscitation and environmental persistence of VBNC bacteria will severely damage drinking water microbiological safety and thus pose a risk to public health. The manner in which chlorination treatment induced a VBNC state in Escherichia coli and the antibiotic persistence of VBNC bacteria was investigated. It was found that low dosage of chlorine (0.5 mg L-1 ) disinfection effectively reduced the culturability of E. coli and induced a VBNC state, after which metabolic activity was reduced and persistence to 9 typical antibiotics was enhanced. Furthermore, RT-qPCR results showed that stress resistance genes (rpoS, marA, ygfA, relE) and ARGs, especially efflux genes were up-regulated compared with culturable cells. The intracellular concentration was tested and found to be lower in VBNC cells than in actively growing E. coli, which suggested a higher efflux rate. The data presented indicate that VBNC E. coli are more persistent than culturable counterparts to a wide variety of antibiotics. VBNC E. coli constitute a potential source of contamination and should be considered during monitoring of drinking water networks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app