Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Quantitative proteomics analysis of proteins involved in alkane uptake comparing the profiling of Pseudomonas aeruginosa SJTD-1 in response to n-octadecane and n-hexadecane.

While many data are available on genes encoding proteins for degradation of hydrocarbons in bacteria, the impact of alkane on transporter protein expression is unclear. Pseudomonas aeruginosa SJTD-1 is a strain that can consume medium- and long-chain n-alkanes. In order to study the proteins involved in n-octadecane uptake, we use iTRAQ and label free comparative proteomics analysis to identify the proteins of alkane uptake in response to n-octadecane (C18) comparing with n-hexadecane (C16) in P. aeruginosa SJTD-1. A total of 1102 and 1249 proteins were identified by iTRAQ-based and label free quantitative methodologies, respectively. By application of 1.5 (iTRAQ) or 2-fold (label free) for upregulated and 0.65 (iTRAQ) or 0.5-fold (label free) for downregulated cutoff values, 91 and 99 proteins were found to be differentially expressed comparing SJTD-1 cultivated on C18 with C16 respectively. There are six proteins with the common differential expression by iTRAQ and label free-based methods. Results of bioinformational analysis suggested the involvement of bacterial chemotaxis in responds to C18. Additionally, quantitative reverse transcriptase PCR (qRT-PCR) results confirmed C18-induced change in levels of FleQ, FliC, NirS, FadL and FadD proteins and the role of the proteins in n-octadecane uptake was further discussed in P. aeruginosa. In conclusion, results of the present study provided information about possible target-related proteins of bacterial chemotaxis, swimming performance, alkane transport to stimulus of n-ctadecane rather than n-hexadecane in P. aeruginosa SJTD-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app