Add like
Add dislike
Add to saved papers

MicroRNA-210 alleviates oxidative stress-associated cardiomyocyte apoptosis by regulating BNIP3.

Oxidative stress-induced myocardial apoptosis and necrosis are involved in ischemia/reperfusion (I/R) injury. This study was performed to investigate microRNA (miR)-210's role in oxidative stress-related myocardial damage. The expression of miR-210 was upregulated in myocardial tissues of I/R rats, while that of Bcl-2 adenovirus E1B 19kDa-interacting protein 3 (BNIP3) was downregulated. To simulate in vivo oxidative stress, H9c2 cells were treated with H2O2 for 48 h. MiR-210 level was increased upon H2O2 stimulation, peaked at 8 h, and then decreased. An opposite expression pattern of BNIP3 was observed. BNIP3 was demonstrated as a direct target of miR-210 via luciferase reporter assay. H2O2-induced cell apoptosis was attenuated by miR-210 mimics, whereas aggravated by miR-210 inhibitor. MiR-210 knockdown-induced cell apoptosis in presence of H2O2 was attenuated by BNIP3 siRNA. Our work demonstrates that miR-210 plays a protective role in H2O2-induced cardiomyocyte apoptosis at least by regulating the pro-apoptotic BNIP3.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app