Add like
Add dislike
Add to saved papers

Redox-Dependent Regulation of Sulfur Metabolism in Biomolecules: Implications for Cardiovascular Health.

SIGNIFICANCE: Sulfur-containing amino acids are integral to the molecular mechanisms that underlie many aspects of cellular function and homeostasis, facilitated by reversible changes in the oxidation states of sulfur atoms. Sulfur-containing amino acids are metabolically linked by interacting pathways that impact the one-carbon metabolic cycle and generation of methyl groups, the folate cycle, and maintenance of the major cellular redox buffer; glutathione. Dysregulation of these pathways is associated with diverse pathologies, notably of the cardiovascular (CV) system, which are typically characterized by inappropriate plasma levels of sulfur-containing amino acids. Recent Advances: Perhaps not surprisingly, the cellular redox state has emerged as a major regulator of many enzymatic processes within these metabolic cycles. The metabolism of cysteine can also result in the production of hydrogen sulfide (H2 S), a signaling molecule whose activity is potentially linked to intracellular levels of both reactive oxygen species (ROS) and molecular oxygen.

CRITICAL ISSUES: In most cases, the endogenous physiological sources of ROS that might mediate the interlinked metabolic pathways of sulfur-containing biomolecules remain unknown. However, the family of NADPH oxidases, and Nox4 in particular, is emerging as a likely candidate.

FUTURE DIRECTIONS: This review focuses on the current knowledge of key aspects of sulfur metabolism, which are regulated by redox-based chemical reactions, and the likely intracellular oxidant sources that might mediate this regulation. This knowledge will be important to guide future targeted therapeutic interventions in diverse CV disorders. Antioxid. Redox Signal. 00, 000-000.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app