Add like
Add dislike
Add to saved papers

Role of Core-Shell Formation in Exciton Confinement Relaxation in Dithiocarbamate-Capped CdSe QDs.

The possibility of exciton delocalization in alkyldithiocarbamate (ATC)-capped CdSe has been investigated for several alkyl groups and compared with phenyldithiocarbamates (PTCs). We find a bathochromic shift for ATC similar to the one obtained for PTC. Our computational studies show reduction in HOMO-LUMO gaps in both PTC and ATC, albeit with a lower shift. However, TDDFT studies revealed that ATC-capped CdSe is more of a localized HOMO state as compared with partly delocalized HOMO in PTC-capped CdSe, hinting at a difference in electronic interaction between the two binding groups. We hypothesized the formation of sulfide layer over the CdSe QDs as the possible reason for the observed bathochromic shift, as verified by absorption spectra of S2- ligand exchange samples. The formation of CdS shell leads to substantial electron delocalization because CdSe CB is in close resonance with CdS, which is exactly the opposite of what was previously concluded in the literature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app