Add like
Add dislike
Add to saved papers

Decreased Glutamate Levels in Patients with Amnestic Mild Cognitive Impairment: An sLASER Proton MR Spectroscopy and PiB-PET Study.

BACKGROUND AND PURPOSE: Glutamate levels may be informative about the declining neuronal health in the central nervous system. We used an advanced proton MR spectroscopy (1 H-MRS) protocol composed of semi-localization by adiabatic selective refocusing (sLASER) localization and FAST(EST)MAP shimming for detection of alterations in brain glutamate concentrations in patients with amnestic mild cognitive impairment.

METHODS: Participants with amnestic mild cognitive impairment (n = 14; median age = 80) and age- and sex-matched clinically normal controls (n = 32; median age = 79) from the population-based Mayo Clinic Study of Aging were recruited prospectively to the 3T single-voxel 1 H-MRS study that examined metabolite changes in the posterior cingulate gyri. To be included, controls had to have low β-amyloid load on [11 C] Pittsburgh Compound B (PiB)-PET (standard uptake value ratio; SUVr < 1.42) and patients with amnestic mild cognitive impairment had to have high β-amyloid load (SUVr ≥ 1.42).

RESULTS: Glutamate concentration and the glutamate/myo-inositol ratio were lower in patients with amnestic mild cognitive impairment than clinically normal controls (P < .05). Higher global cortical PiB-PET SUVr correlated with lower glutamate/myo-inositol (r = -.3, P = .04).

CONCLUSIONS: The advanced sLASER with FAST(EST)MAP shimming is a promising protocol for identifying glutamate alterations. Advanced 1 H-MRS protocols may add to the understanding of early Alzheimer's disease pathophysiology through detection of glutamate concentration in posterior cingulate gyri of individuals with amnestic mild cognitive impairment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app