Add like
Add dislike
Add to saved papers

Mixed-Stack Charge Transfer Crystals of Pillar[5]quinone and Tetrathiafulvalene Exhibiting Ferroelectric Features.

Ferroelectric materials find extensive applications in the fabrication of compact memory devices and ultra-sensitive multifunctional detectors. Face-to-face alternate stacking of electron donors and acceptors effectuate long-range unidirectional ordering of charge-transfer (CT) dipoles, promising tunable ferroelectricity. Herein we report a new TTF-quinone system-an emerald green CT complex consisting pillar[5]quinone (P5Q) and tetrathiafulvalene (TTF). The CT crystals, as determined by single crystal synchrotron X-ray diffraction, adopt a 1:1 mixed-stack arrangement of donor and acceptor with alternating dimers of TTF and 1,4-dioxane encapsulated P5Q. The TTF-P5Q.dioxane crystal possesses a macroscopic polarization axis giving rise to ferroelectricity at room temperature. The CT complex manifests ferroelectric features such as optical polarization rotation, temperature-dependent phase transition and piezoelectric response in single crystals. Ferroelectric behavior observed in P5Q-based CT complex widens the scope for further work on this structurally intriguing and readily accessible cyclic pentaquinone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app