Add like
Add dislike
Add to saved papers

Coarse-Grained Descriptions of Dynamics for Networks with Both Intrinsic and Structural Heterogeneities.

Finding accurate reduced descriptions for large, complex, dynamically evolving networks is a crucial enabler to their simulation, analysis, and ultimately design. Here, we propose and illustrate a systematic and powerful approach to obtaining good collective coarse-grained observables-variables successfully summarizing the detailed state of such networks. Finding such variables can naturally lead to successful reduced dynamic models for the networks. The main premise enabling our approach is the assumption that the behavior of a node in the network depends (after a short initial transient) on the node identity: a set of descriptors that quantify the node properties, whether intrinsic (e.g., parameters in the node evolution equations) or structural (imparted to the node by its connectivity in the particular network structure). The approach creates a natural link with modeling and "computational enabling technology" developed in the context of Uncertainty Quantification. In our case, however, we will not focus on ensembles of different realizations of a problem, each with parameters randomly selected from a distribution. We will instead study many coupled heterogeneous units, each characterized by randomly assigned (heterogeneous) parameter value(s). One could then coin the term Heterogeneity Quantification for this approach, which we illustrate through a model dynamic network consisting of coupled oscillators with one intrinsic heterogeneity (oscillator individual frequency) and one structural heterogeneity (oscillator degree in the undirected network). The computational implementation of the approach, its shortcomings and possible extensions are also discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app