Add like
Add dislike
Add to saved papers

Free-standing plasmonic metal-dielectric-metal bandpass filter with high transmission efficiency.

Scientific Reports 2017 June 29
Plasmonic spectrum filtering devices based on metallic nanostructures have attracted wide attention due to their good reliability, ease of fabrication, and wideband tunability. However, the presence of thick substrate significantly limits the structure's longitudinal size for further optoelectronic integration and reduces the devices' performance. Here we propose and demonstrate an ultra-thin plasmonic bandpass filter based on free-standing periodic metal-dielectric-metal stack geometry working in the near-infrared wavelength range. The coupling between free-space electromagnetic waves and spatially confined plasmonic modes in the designed structure is systematically investigated. As demonstrated in the calculation and experiment, the free-standing plasmonic filters have more than 90% transmission efficiency and superior angular tolerance. The experimental results are in good agreement with the theoretical calculations. These artificial nanostructured filtering devices may find potential applications in the extremely compact device architectures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app