Add like
Add dislike
Add to saved papers

Comparative evaluation of conventional and microwave hydrothermal carbonization of human biowaste for value recovery.

This paper compares conventional and microwave hydrothermal carbonization (HTC) of human biowaste (HBW) at 160 °C, 180 °C and 200 °C as a potential technology to recover valuable carbonaceous solid fuel char and organic-rich liquor. Also discussed are the influence of HTC heating methods and temperature on HBW processing conversion into solid fuel char, i.e. yield and post-HTC management, dewaterability rates, particle size distribution and the carbon and energy properties of solid fuel char. While HTC temperatures influenced all parameters investigated, especially yield and properties of end products recovered, heating source effects were noticeable on dewatering rates, char particle sizes and HBW processing/end product recovery rate and, by extension, energy consumed. The microwave process was found to be more efficient for dewatering processed HBW and for char recovery, consuming half the energy used by the conventional HTC method despite the similarity in yields, carbon and energy properties of the recovered char. However, both processes reliably overcame the heterogeneity of HBW, converting them into non-foul end products, which were easily dewatered at <3 seconds/g total solids (TS) (c.f. 50.3 seconds/g TS for a raw sample) to recover energy-densified chars of ≈17 MJ/kg calorific value and up to 1.4 g/l of ammonia concentration in recovered liquor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app