Add like
Add dislike
Add to saved papers

Adsorption characteristic of As(III) on goethite waste generated from hydrometallurgy of zinc.

In this paper, goethite waste from hydrometallurgy of zinc was used as a raw material for arsenic adsorbent preparation. The goethite waste adsorbent (GWA) was characterized with scanning electron microscope (SEM), X-ray powder diffraction (XRD), and particle size distribution analysis. The adsorption of As(III) on GWA was studied as a function of contact time, pH, and coexisting anions. The safety of GWA usage in the wastewater treatment process was assessed by toxicity characteristic leaching procedure (TCLP) tests. The equilibrium adsorption data fitted well with the Langmuir isotherm model, and the maximum adsorption capacity of As(III) on GWA was 51.47 mg.g-1 . GWA showed higher adsorption capacity at weak alkaline pH values (7.0-9.5). The coexisting PO4 3- and SiO3 2- presented significant adsorption competition with As(III) in aquatic systems. No significant heavy metals leaching was observed for GWA and As(III) loaded GWA in TCLP tests, which implied the safety of GWA as an adsorbent for arsenic containing wastewater treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app