Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Alterations in the Thymic Selection Threshold Skew the Self-Reactivity of the TCR Repertoire in Neonates.

Journal of Immunology 2017 August 2
Neonatal and adult T cells differ in their effector functions. Although it is known that cell-intrinsic differences in mature T cells contribute to this phenomenon, the factors involved remain unclear. Given emerging evidence that the binding strength of a TCR for self-peptide presented by MHC (self-pMHC) impacts T cell function, we sought to determine whether altered thymic selection influences the self-reactivity of the TCR repertoire during ontogeny. We found that conventional and regulatory T cell subsets in the thymus of neonates and young mice expressed higher levels of cell surface CD5, a surrogate marker for TCR avidity for self-pMHC, as compared with their adult counterparts, and this difference in self-reactivity was independent of the germline bias of the neonatal TCR repertoire. The increased binding strength of the TCR repertoire for self-pMHC in neonates was not solely due to reported defects in clonal deletion. Rather, our data suggest that thymic selection is altered in young mice such that thymocytes bearing TCRs with low affinity for self-peptide are not efficiently selected into the neonatal repertoire, and stronger TCR signals accompany both conventional and regulatory T cell selection. Importantly, the distinct levels of T cell self-reactivity reflect physiologically relevant differences based on the preferential expansion of T cells from young mice to fill a lymphopenic environment. Therefore, differences in thymic selection in young versus adult mice skew the TCR repertoire, and the relatively higher self-reactivity of the T cell pool may contribute to the distinct immune responses observed in neonates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app