Add like
Add dislike
Add to saved papers

Renal vascular and glomerular pathologies associated with spontaneous hypertension in the nonhuman primate Chlorocebus aethiops sabaeus.

Hypertension is a complex, multifactorial disease affecting an estimated 78 million adults in the United States. Despite scientific gains, the etiology of human essential hypertension is unknown and current experimental models do not recapitulate all the behavioral and physiological characteristics of the pathology. Researchers should assess the translational capacity of these models and look to other animal models for the discovery of new therapies. Chlorocebus aethiops sabaeus, the African Green Monkey (AGM), is a nonhuman primate that develops spontaneous hypertension and may provide a novel translational model for the study of hypertension and associated diseases. In a randomly selected group of 424 adult AGMs, 37% (157/424) exhibited systolic blood pressures (SBP) >140 mmHg (SBP: 172.0 ± 2.2 mmHg) and were characterized as hypertensive (HT). 44% (187/424) were characterized as normotensive with SBP <120 mmHg (NT, SBP: 99.6 ± 1.0 mmHg) and the remaining 18% (80/424) as borderline hypertensive (BHT, SBP: 130.6 ± 0.6 mmHg). When compared with NT animals, HT AGMs are older (8.7 ± 0.6 vs. 12.4 ± 0.7 yr, P < 0.05) with elevated heart rates (125.7 ± 2.0 vs. 137.7 ± 2.2 beats/min, P < 0.05). BHT animals had average heart rates of 138.2 ± 3.1 beats/min (P < 0.05 compared with NT) and were 11.00 ± 0.9 yr old. NT and HT animals had similar levels of angiotensinogen gene expression, plasma renin activity, and renal cortical renin content (P > 0.05). HT monkeys exhibit renal vascular remodeling (wall-to-lumen ratio NT 0.11 ± 0.01 vs. HT 0.15 ± 0.02, P < 0.05) and altered glomerular morphology (Bowman's capsular space: NT 30.9 ± 1.9% vs. HT 44.4 ± 3.1%, P < 0.05). The hypertensive AGM provides a large animal model that is highly similar to humans and should be studied to identify novel, more effective targets for the treatment of hypertension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app