Add like
Add dislike
Add to saved papers

Cedrin identified from Cedrus deodara (Roxb.) G. Don protects PC12 cells against neurotoxicity induced by Aβ 1-42 .

Alzheimer's disease is a severe neurodegenerative disease affecting elder worldwide and closely related to the neurotoxicity induced by amyloid β. To find efficient therapeutics, we have investigated the protective effects of cedrin from Cedrus deodara (Roxb.) G. Don on PC12 cells against the neurotoxicity induced by amyloid β1-42 . The results have shown the viability of PC12 cells injured by amyloid β1-42 can be improved by cedrin. Cedrin can reduce reacrive oxygen species overproduction, increase the activity of superoxide dismutase and decrease malondialdehyde content. Meanwhile, the loss of mitochondrial membrane potential and mitochondrial permeability transition pore opening in PC12 cells, and elevated Caspase-3 activity, downregulated Bcl-2 and upregulated Bax are meliorated. These results demonstrate the protective effect of cedrin is related to the inhibition of oxidative stress, improvement of mitochondrial dysfunction and suppression of apoptosis. This investigation gives evidences for the application of cedrin in practice and further investigation in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app