Add like
Add dislike
Add to saved papers

Next-generation sequencing of the human TRPV1 gene and the regulating co-players LTB4R and LTB4R2 based on a custom AmpliSeq™ panel.

BACKGROUND: Transient receptor potential cation channel subfamily V member 1 (TRPV1) are sensitive to heat, capsaicin, pungent chemicals and other noxious stimuli. They play important roles in the pain pathway where in concert with proinflammatory factors such as leukotrienes they mediate sensitization and hyperalgesia. TRPV1 is the target of several novel analgesics drugs under development and therefore, TRPV1 genetic variants might represent promising candidates for pharmacogenetic modulators of drug effects.

METHODS: A next-generation sequencing (NGS) panel was created for the human TRPV1 gene and in addition, for the leukotriene receptors BLT1 and BLT2 recently described to modulate TRPV1 mediated sensitisation processes rendering the coding genes LTB4R and LTB4R2 important co-players in pharmacogenetic approaches involving TRPV1. The NGS workflow was based on a custom AmpliSeq™ panel and designed for sequencing of human genes on an Ion PGM™ Sequencer. A cohort of 80 healthy subjects of Western European descent was screened to evaluate and validate the detection of exomic sequences of the coding genes with 25 base pair exon padding.

RESULTS: The amplicons covered approximately 97% of the target sequence. A median of 2.81 x 106 reads per run was obtained. This identified approximately 140 chromosome loci where nucleotides deviated from the reference sequence GRCh37 hg19 comprising the three genes TRPV1, LTB4R and LTB4R2. Correspondence between NGS and Sanger derived nucleotide sequences was 100%.

CONCLUSIONS: Results suggested that the NGS approach based on AmpliSeq™ libraries and Ion Personal Genome Machine (PGM) sequencing is a highly efficient mutation detection method. It is suitable for large-scale sequencing of TRPV1 and functionally related genes. The method adds a large amount of genetic information as a basis for complete analysis of TRPV1 ion channel genetics and its functional consequences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app