COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Comparison of 4 Methods for Dynamization of Locking Plates: Differences in the Amount and Type of Fracture Motion.

BACKGROUND: Decreasing the stiffness of locked plating constructs can promote natural fracture healing by controlled dynamization of the fracture. This biomechanical study compared the effect of 4 different stiffness reduction methods on interfragmentary motion by measuring axial motion and shear motion at the fracture site.

METHODS: Distal femur locking plates were applied to bridge a metadiaphyseal fracture in femur surrogates. A locked construct with a short-bridge span served as the nondynamized control group (LOCKED). Four different methods for stiffness reduction were evaluated: replacing diaphyseal locking screws with nonlocked screws (NONLOCKED); bridge dynamization (BRIDGE) with 2 empty screw holes proximal to the fracture; screw dynamization with far cortical locking (FCL) screws; and plate dynamization with active locking plates (ACTIVE). Construct stiffness, axial motion, and shear motion at the fracture site were measured to characterize each dynamization methods.

RESULTS: Compared with LOCKED control constructs, NONLOCKED constructs had a similar stiffness (P = 0.08), axial motion (P = 0.07), and shear motion (P = 0.97). BRIDGE constructs reduced stiffness by 45% compared with LOCKED constructs (P < 0.001), but interfragmentary motion was dominated by shear. Compared with LOCKED constructs, FCL and ACTIVE constructs reduced stiffness by 62% (P < 0.001) and 75% (P < 0.001), respectively, and significantly increased axial motion, but not shear motion.

CONCLUSIONS: In a surrogate model of a distal femur fracture, replacing locked with nonlocked diaphyseal screws does not significantly decrease construct stiffness and does not enhance interfragmentary motion. A longer bridge span primarily increases shear motion, not axial motion. The use of FCL screws or active plating delivers axial dynamization without introducing shear motion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app