Add like
Add dislike
Add to saved papers

Bacillus amyloliquefaciens SAY09 Increases Cadmium Resistance in Plants by Activation of Auxin-Mediated Signaling Pathways.

Genes 2017 June 29
Without physical contact with plants, certain plant growth-promoting rhizobacteria (PGPR) can release volatile organic compounds (VOCs) to regulate nutrient acquisition and induce systemic immunity in plants. However, whether the PGPR-emitted VOCs can induce cadmium (Cd) tolerance of plants and the underlying mechanisms remain elusive. In this study, we probed the effects of Bacillus amyloliquefaciens (strain SAY09)-emitted VOCs on the growth of Arabidopsis plants under Cd stress. SAY09 exposure alleviates Cd toxicity in plants with increased auxin biosynthesis. RNA-Seq analyses revealed that SAY09 exposure provoked iron (Fe) uptake- and cell wall-associated pathways in the Cd-treated plants. However, SAY09 exposure failed to increase Cd resistance of plants after treatment with 1-naphthylphthalamic acid (NPA) or 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO). Under Cd stress, SAY09 exposure markedly promoted Fe absorption in plants with the increased hemicellulose 1 (HC1) content and Cd deposition in root cell wall, whereas these effects were almost abrogated by treatment with NPA or c-PTIO. Moreover, exogenous NPA remarkably repressed the accumulation of nitric oxide (NO) in the SAY09-exposed roots under Cd stress. Taken together, the findings indicated that NO acted as downstream signals of SAY09-induced auxin to regulate Fe acquisition and augment Cd fixation in roots, thereby ameliorating Cd toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app