Add like
Add dislike
Add to saved papers

Simvastatin induced actin cytoskeleton disassembly in normal and transformed fibroblasts without affecting lipid raft integrity.

Statins are the most commonly prescribed agents used to modulate cholesterol levels in course of hypercholesterolemia treatment because of their relative tolerability and LDL-C lowering effect. Recently, there are emerging interests in the perspectives of statin drugs as anticancer agents based on preclinical evidence of their antiproliferative, proapoptotic, and anti-invasive properties. Functional impact of statin application on transformed cells still remains obscure that requires systematic study on adequate cellular models to provide correct comparison with their non-transformed counterparts. Cholesterol is the major lipid component of mammalian cells and it plays a crucial role in organization, lateral heterogeneity, and dynamics of plasma membrane as well as in membrane-cytoskeleton interrelations. To date, it is uncertain whether cellular effects of statins involve lipid-dependent alteration of plasma membrane. Here, the effects of simvastatin on lipid rafts, F-actin network and cellular viability were determined in comparative experiments on transformed fibroblasts and their non-transformed counterpart. GM1 lipid raft marker staining indicated no change of lipid raft integrity after short- or long-term simvastatin treatments. In the same time, simvastatin induced cytoskeleton rearrangement including partial F-actin disruption in cholesterol- and lipid raft-independent manner. Simvastatin dose-dependently affected viability of BALB/3T3 and 3T3B-SV40 cell lines: transformed fibroblasts were noticeably more sensitive to simvastatin comparing to non-transformed cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app