Add like
Add dislike
Add to saved papers

Preventive Effects of Ginseng Total Saponins on Chronic Corticosterone-Induced Impairment in Astrocyte Structural Plasticity and Hippocampal Atrophy.

To further explore the underlying antidepressant mechanism of ginseng total saponins (GTS), this study observed the effects on hippocampal astrocyte structural plasticity and hippocampal volume in the corticosterone-induced mouse depression model. Corticosterone (20 mg/kg/day) was administered subcutaneously for 5 weeks, and GTS (12.5, 25, and 50 mg/kg/day; namely GTSL, GTSM, and GTSH) or fluoxetine (10 mg/kg/day) were given intragastrically during the last 3 weeks. On day 33 and day 34, depression-like behavior was observed via a forced swimming test and a tail suspension test, respectively. At 6 h after the last dose of corticosterone (day 35), all mice were sacrificed followed by serum corticosterone assays, stereological analysis of hippocampal glial fibrillary acidic protein-positive (GFAP(+) ) astroctyes and hippocampal volume, and hippocampal glycogen tests. Results showed that all doses of GTS ameliorated depression-like behavior and the decrease in hippocampal glycogen without normalizing hypercortisolism. Moreover, GTSH and GTSM reversed the corticosterone-induced reduction in the total number of hippocampal GFAP(+) astrocytes and hippocampal volume. Additionally, GTSH alleviated the diminished protrusion length and somal volume of GFAP(+) astrocytes induced by corticosterone. These findings imply that the effects of GTS on corticosterone-induced depression-like behavior may be mediated partly through the protection to hippocampal astrocyte structural plasticity. Copyright © 2017 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app