Add like
Add dislike
Add to saved papers

Treadmill Exercise Attenuates α-Synuclein Levels by Promoting Mitochondrial Function and Autophagy Possibly via SIRT1 in the Chronic MPTP/P-Induced Mouse Model of Parkinson's Disease.

Accumulation of alpha-synuclein (α-Syn) is significantly correlated with the presence of progressive motor deficits, which is the main symptom of Parkinson's disease (PD). Although physical exercise reduces α-Syn levels, the molecular mechanisms by which physical exercise decreases α-Syn remain unclear. We hypothesized that treadmill exercise (TE) decreases α-Syn levels by improving mitochondrial function and promoting autophagy via the sirtuin-1 (SIRT1) signaling pathway in the chronic 1-methyl-1,2,3,6-tetrahydropyridine with probenecid (MPTP/P)-induced mouse model of PD. We found that TE reduces α-Syn levels, which subsequently ameliorates dopaminergic (DAergic) neuron loss and α-Syn-mediated apoptotic cell death. Most importantly, TE increases SIRT1 expression, which results in increased mitochondrial biogenesis and decreased oxidative stress by activating peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). SIRT1 activation by TE also promotes autophagic clearance of α-Syn by inducing the activation of microtubule-associated protein 1 light chain 3 (LC3). Collectively, our results demonstrate that TE may reduce α-Syn levels by improving mitochondrial function and increasing autophagic flux, thereby ameliorating chronic MPTP/P-induced motor deficits in PD mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app