Add like
Add dislike
Add to saved papers

Detection of BRCA1 gross rearrangements by droplet digital PCR.

PURPOSE: Large genomic rearrangements (LGRs) constitute a significant share of pathogenic BRCA1 mutations. Multiplex ligation-dependent probe amplification (MLPA) is a leading method for LGR detection; however, it is entirely based on the use of commercial kits, includes relatively time-consuming hybridization step, and is not convenient for large-scale screening of recurrent LGRs.

MATERIALS AND METHODS: We developed and validated the droplet digital PCR (ddPCR) assay, which covers the entire coding region of BRCA1 gene and is capable to precisely quantitate the copy number for each exon.

RESULTS: 141 breast cancer (BC) patients, who demonstrated evident clinical features of hereditary BC but turned out to be negative for founder BRCA1/2 mutations, were subjected to the LGR analysis. Four patients with LGR were identified, with three cases of exon 8 deletion and one women carrying the deletion of exons 5-7. Excellent concordance with MLPA test was observed. Exon 8 copy number was tested in additional 720 BC and 184 ovarian cancer (OC) high-risk patients, and another four cases with the deletion were revealed; MLPA re-analysis demonstrated that exon 8 loss was a part of a larger genetic alteration in two cases, while the remaining two patients had isolated defect of exon 8. Long-range PCR and next generation sequencing of DNA samples carrying exon 8 deletion revealed two types of recurrent LGRs.

CONCLUSION: Droplet digital PCR is a reliable tool for the detection of large genomic rearrangements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app