Add like
Add dislike
Add to saved papers

MicroRNA-605 functions as a tumor suppressor by targeting INPP4B in melanoma.

Oncology Reports 2017 August
MicroRNAs (miRNAs) play crucial roles in the initiation and progression of various cancers, including melanoma. Recently, the genetic variants and deregulation of miR-605 have been reported to participate in carcinogenesis. However, the expression status of the miR-605 in melanoma tissues and its role in melanoma progression remain unknown. In this study, we found that miR-605 was significantly downregulated in melanoma cell lines and clinical specimens. Further function studies demonstrated that miR-605 suppressed melanoma cell growth both in vitro and in vivo. Moreover, INPP4B gene was identified as a target of miR-605 through bioinformatics analysis and luciferase reporter assays. Further analysis demonstrated that the inhibition of INPP4B mediated SGK3 activation was required for the suppressive role of miR-605 on melanomas cell growth. Collectively, our data suggest that miR-605 functions as a tumor suppressor by negatively regulating INPP4B mediated SGK3 activation in melanoma and may present a potential target for therapeutic intervention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app