Add like
Add dislike
Add to saved papers

Berberine attenuates convulsing behavior and extracellular glutamate and aspartate changes in 4-aminopyridine treated rats.

OBJECTIVES: K+ channel blocker 4-aminopyridine (4-AP) stimulates the release of glutamate from nerve terminals and induces seizures. Berberine as a potential herbal drug exerts several pharmacological actions on the central nervous system including anxiolytic, anticonvulsant, and neuroprotective properties. The present study aimed to investigate the effect of berberine on seizure onset and time course of the extracellular levels of excitatory amino acids (EAA), glutamate and aspartate, changes produced by 4-AP in rat hippocampus.

MATERIALS AND METHODS: The rats were given either saline or berberine (50, 100 and 200 mg/kg, IP) 40 min before administration of 4-AP (15 mg/kg, IP) and the onset of seizure was recorded. A group of rats also received diazepam (DZP, 15 mg/kg, IP) 20 min prior to 4-AP administration. Hippocampal extracellular levels of EAA were also measured using microdialysis assay. Analysis of the dialysate samples was performed by reversed-phase high performance liquid chromatography (HPLC) with precolumn derivatization with o-phthaldialdehyde and fluorescence detection.

RESULTS: Our findings suggest that berberine significantly delayed the seizure onset following 4-AP injection. There was a considerable increase in the extracellular glutamate and aspartate levels in 4-AP treated rats and 4-AP-evoked release of EAA was sharply reduced (about 4-5 fold especially at 20 min after 4-AP administration) in berberine treatment groups.

CONCLUSION: The results of present study show that berberine attenuates 4-AP induced seizures by decreasing hippocampal aspartate and glutamate release in rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app