Add like
Add dislike
Add to saved papers

Optimised NLC: a nanotechnological approach to improve the anaesthetic effect of bupivacaine.

The short time of action and systemic toxicity of local anaesthetics limit their clinical application. Bupivacaine is the most frequently used local anaesthetic in surgical procedures worldwide. The discovery that its S(-) enantiomeric form is less toxic than the R(+) form led to the introduction of products with enantiomeric excess (S75:R25 bupivacaine) in the market. Nevertheless, the time of action of bupivacaine is still short; to overcome that, bupivacaine S75:R25 (BVCS75 ) was encapsulated in nanostructured lipid carriers (NLC). In this work, we present the development of the formulation using chemometric tools of experimental design to study the formulation factors and Raman mapping associated with Classical Least Squares (CLS) to study the miscibility of the solid and the liquid lipids. The selected formulation of the nanostructured lipid carrier containing bupivacaine S75:R25 (NLCBVC ) was observed to be stable for 12 months under room conditions regarding particle size, polydispersion, Zeta potential and encapsulation efficiency. The characterisation by DSC, XDR and TEM confirmed the encapsulation of BVCS75 in the lipid matrix, with no changes in the structure of the nanoparticles. The in vivo analgesic effect elicited by NLCBVC was twice that of free BVCS75 . Besides improving the time of action, no statistical difference in the blockage of the sciatic nerve of rats was found between 0.125% NLCBVC and 0.5% free BVCS75 . Therefore, the formulation allows a reduction in the required anaesthesia dose, decreasing the systemic toxicity of bupivacaine, and opening up new possibilities for different clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app