Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Plant manipulation through gall formation constrains amino acid transporter evolution in sap-feeding insects.

BACKGROUND: The herbivore lifestyle leads to encounters with plant toxins and requires mechanisms to overcome suboptimal nutrient availability in plant tissues. Although the evolution of bacterial endosymbiosis alleviated many of these challenges, the ability to manipulate plant nutrient status has evolved in lineages with and without nutritional symbionts. Whether and how these alternative nutrient acquisition strategies interact or constrain insect evolution is unknown. We studied the transcriptomes of galling and free-living aphidomorphs to characterize how amino acid transporter evolution is influenced by the ability to manipulate plant resource availability.

RESULTS: Using a comparative approach we found phylloxerids retain nearly all amino acid transporters as other aphidomorphs, despite loss of nutritional endosymbiosis. Free living species show more transporters than galling species within the same genus, family, or infraorder, indicating plant hosts influence the maintenance and evolution of nutrient transport within herbivores. Transcript profiles also show lineage specificity and suggest some genes may facilitate life without endosymbionts or the galling lifestyle.

CONCLUSIONS: The transcript abundance profiles we document across fluid feeding herbivores support plant host constraint on insect amino acid transporter evolution. Given amino acid uptake, transport, and catabolism underlie the success of herbivory as a life history strategy, this suggests that plant host nutrient quality, whether constitutive or induced, alters the selective environment surrounding the evolution and maintenance of endosymbiosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app