Add like
Add dislike
Add to saved papers

Stability-Indicating TLC-Densitometric Assay for Methyltestosterone and Quantum Chemical Calculations.

Methyltestosterone is a synthetic testosterone derivative commonly used for the treatment of testosterone deficiency in males and one the anabolic steroids whose use is banned by World Anti-Doping Agency (WADA). This study presents a simple, cost-effective and rapid stability-indicating assay for densitometric quantification of methyltestosterone in pharmaceutical formulation. The developed method employed pre-coated TLC plates with mobile phase hexane:acetone (6.5:3.5 v/v). Limit of detection and limit of quantitation were found to be 2.06 and 6.24 ng/spot, respectively. Stress degradation study of methyltestosterone was conducted by applying various stress conditions such as hydrolysis under acidic, basic and neutral conditions, heating in anhydrous conditions and exposure to light. Methyltestosterone was found to be susceptible to photodegradation, acidic and basic hydrolysis. Degraded products were well resolved with significantly different Rf values. Acid degraded product was identified as 17,17-dimethyl-18-norandrosta-4,13(14)-dien-3-one through spectroscopic methods. The reactivity of methyltestosterone under applied stress conditions was also explained by quantum chemical calculations. The developed method is found to be repeatable, selective and accurate for quantification of methyltestosterone and can be employed for routine analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app