Add like
Add dislike
Add to saved papers

Evidence for the presence of cell-surface-bound and intracellular bactericidal toxins in the dinoflagellate Heterocapsa circularisquama.

Aquatic Toxicology 2017 August
Heterocapsa circularisquama, a harmful dinoflagellate, has multiple haemolytic toxins that are considered to be involved in the toxic mechanism against shellfish and certain species of zooplankton. To evaluate the further nature of the toxins of H. circularisquama, we investigated its effects on several species of bacteria. By colony formation assay, we found that H. circularisquama had antibacterial activity toward the marine bacterium Vibrio alginolyticus in a cell density-dependent manner. When the inoculated bacterial cells were co-cultured with H. circularisquama under dinoflagellate cell culture conditions, the bacterial growth was significantly suppressed, whereas the number of live bacterial cells increased when cultured in the medium alone. Since the cell-free culture supernatant and the ruptured dinoflagellate cell suspension showed no toxic effects on V. alginolyticus, it is speculated that direct cell-to-cell contact mediated by the live dinoflagellate cells may be the major toxic mechanism. The decrease in bactericidal activity of theca-removed dinoflagellate cells may further support this speculation. H. circularisquama also showed bactericidal activities towards Escherichia coli and Staphylococcus aureus. In the dinoflagellate/bacteria co-culture system, the number of live bacterial cells declined with increasing incubation time. Light-dependent antibacterial activity of the ruptured dinoflagellate cells against S. aureus was observed, whereas no such activity was detected against E. coli. These results suggest that intracellular photosensitising bactericidal toxins, which were previously found to be porphyrin derivatives, may have specificity towards gram-positive bacteria. Based on these results together with previous studies, it is obvious that H. circularisquama possesses antibacterial activity, which may be mediated through toxins located on its cell surface. It is likely that such toxins play a role in the defence mechanism against predators and infectious bacteria. Although the exact biological significance of intracellular photosensitising toxins is still unclear, such toxins may have potential to be developed as novel photo-controllable antibiotics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app