Add like
Add dislike
Add to saved papers

Confining Sulfur in N-Doped Porous Carbon Microspheres Derived from Microalgaes for Advanced Lithium-Sulfur Batteries.

Lithium-sulfur (Li-S) battery is one of the most attractive candidates for the next-generation energy storage system. However, the intrinsic insulating nature of sulfur and the notorious polysulfide shuttle are the major obstacles, which hinder the commercial application of Li-S battery. Confining sulfur into conductive porous carbon matrices with designed polarized surfaces is regarded as a promising and effective strategy to overcome above issues. Herein, we propose to use microalgaes (Schizochytrium sp.) as low-cost, renewable carbon/nitrogen precursors and biological templates to synthesize N-doped porous carbon microspheres (NPCMs). These rational designed NPCMs can not only render the sulfur-loaded NPCMs (NPCSMs) composites with high electronic conductivity and sulfur content, but also greatly suppress the diffusion of polysulfides by strongly physical and chemical adsorptions. As a result, NPCSMs cathode demonstrates a superior reversible capacity (1030.7 mA h g-1 ) and remarkable capacity retention (91%) at 0.1 A g-1 after 100 cycles. Even at an extremely high current density of 5 A g-1 , NPCSMs still can deliver a satisfactory discharge capacity of 692.3 mAh g-1 . This work reveals a sustainable and effective biosynthetic strategy to fabricate N-doped porous carbon matrices for high performance sulfur cathode in Li-S battery, as well as offers a fascinating possibility to rationally design and synthesize novel carbon-based composites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app