Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Video-Audio Media
Add like
Add dislike
Add to saved papers

Murine Aortic Crush Injury: An Efficient In Vivo Model of Smooth Muscle Cell Proliferation and Endothelial Function.

Arterial reconstruction, whether angioplasty or bypass surgery, involves iatrogenic trauma causing endothelial disruption and vascular smooth muscle cell (VSMC) proliferation. Common murine models study small vessels such as the carotid and femoral arteries. Herein we describe an in vivo system in which both VSMC proliferation and endothelial barrier function can be simultaneously assessed in a large vessel. We studied the infrarenal aortic response to injury in C57BL/6 mice. The aorta was injured from the left renal vein to the aortic bifurcation by 30 transmural crushes of 5-seconds duration with a cotton-tipped applicator. Morphological changes were assessed with conventional histology. Aorta wall thickness was measured from the luminal surface to the adventitia. EdU integration and counter staining with DAPI and alpha-actin was used to demonstrate VSMC proliferation. Activation of ERK1/2, a known moderator of intimal hyperplasia formation, was determined by Western Blot analysis. The effect of inflammation was determined by immunohistochemistry for B-cells, T-cells, and macrophages. En face sections of endothelium were visualized with scanning electron microscopy (SEM). Endothelial barrier function was determined with Evans Blue staining. Transmural injury resulted in aortic wall thickening. This injury induced VSMC proliferation, most prominently at 3 days after injury, and early activation of ERK1/2 and decreased p27kip1 expression. Injury did not result in increased B-cells, T-cells, or macrophages infiltration in the vessel wall. Injury caused partial endothelial cell denudation and loss of cell-cell contact. Injury resulted in a significant loss of endothelial barrier function, which returned to baseline after seven days. The murine transmural blunt aortic injury model provides an efficient system to simultaneously study both VSMC proliferation and endothelial barrier function in a large vessel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app