Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Photocontrollable Probe Spatiotemporally Induces Neurotoxic Fibrillar Aggregates and Impairs Nucleocytoplasmic Trafficking.

ACS Nano 2017 July 26
The abnormal assembly of misfolded proteins into neurotoxic aggregates is the hallmark associated with neurodegenerative diseases. Herein, we establish a photocontrollable platform to trigger amyloidogenesis to recapitulate the pathogenesis of amyotrophic lateral sclerosis (ALS) by applying a chemically engineered probe as a "switch" in live cells. This probe is composed of an amyloidogenic peptide from TDP-43, a photolabile linker, a polycationic sequence both to mask amyloidogenicity and for cell penetration, and a fluorophore for visualization. The photocontrollable probe can self-assemble into a spherical vesicle but rapidly develops massive nanofibrils with amyloid properties upon photoactivation. The photoinduced in vitro fibrillization process is characterized by biophysical techniques. In cellular experiments, this cell-penetrable vesicle was retained in the cytoplasm, seeded the mislocalized endogenous TDP-43 into aggregates upon irradiation, and consequently initiated apoptosis. In addition, this photocontrollable vesicle interfered with nucleocytoplasmic protein transport and triggered cortical neuron degeneration. Our developed strategy provides in vitro and in vivo spatiotemporal control of neurotoxic fibrillar aggregate formation, which can be readily applied in the studies of protein misfolding, aggregation-induced protein mislocalization, and amyloid-induced pathogenesis in different diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app