Journal Article
Meta-Analysis
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Adaptive dynamics of the 5-HT systems following chronic administration of selective serotonin reuptake inhibitors: a meta-analysis.

Selective serotonin reuptake inhibitors (SSRIs) are the most frequently prescribed antidepressants. However, a major concern is their delayed onset of action, which is hypothesized to be associated with the time required for serotonin (5-HT) autoreceptors to desensitize, which should be reflected by actual neurochemical changes. Numerous in vivo microdialysis studies have been published that report on 5-HT levels in different brain sites following SSRI administration. Here, we performed a meta-analysis on dynamic changes of 5-HT neurotransmission during the course of chronic SSRI treatment. We conducted a meta-analysis on research articles of 5-HT neurotransmission measured by in vivo microdialysis in rat brain after subchronic and chronic SSRI administrations. In total, data from 42 microdialysis studies (798 rats) were analyzed. Within the first week of SSRI treatment, extracellular 5-HT concentrations drop in frontal cortex. Over the next 2 weeks of treatment, a linear increase in extracellular 5-HT levels up to 350% of prior treatment baseline is evident (n = 269). However, in hippocampus, prefrontal cortex, nucleus accumbens, and ventral tegmental area we found increased 5-HT levels within the first 3 days of SSRI administration. The time course of 5-HT dynamics in frontal cortex is in line with the hypothesis that 5-HT autoreceptors desensitize over 2-3 weeks of SSRI treatment and thereby enhanced extracellular 5-HT levels ensue. Yet, in other regions we did not find evidence supporting the traditional autoreceptor-mediated feedback loops hypothesis and thus other neurobiological adaptation mechanisms may also play a role in the delayed onset of SSRI action.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app