Add like
Add dislike
Add to saved papers

MicroRNA-139-5p Inhibits Cell Proliferation and Invasion by Targeting RHO-Associated Coiled-Coil-Containing Protein Kinase 2 in Ovarian Cancer.

Oncology Research 2018 April 11
Increasing evidence indicates that the dysregulation of microRNAs is associated with the development and progression of various cancers. MicroRNA-139-5p (miR-139-5p) has been reported to have a tumor suppressive role in many types of cancers. The role of miR-139-5p in ovarian cancer (OC) is poorly understood. The purpose of the present study was to explore the expression of miR-139-5p and its function in OC. The results showed that miR-139-5p expression was markedly downregulated in OC tissues and cell lines. In addition, underexpression of miR-139-5p was significantly associated with FIGO stage, lymph mode metastasis, and poor overall survival of OC patients. Functional analyses indicated that overexpression of miR-139-5p significantly inhibited proliferation, colony formation, migration, and invasion of OC cells. Rho-associated coiled-coil-containing protein kinase 2 (ROCK2) was identified as a direct target of miR-139-5p using luciferase reporter assays, qualitative real-time reverse transcriptase PCR (qRT-PCR), and Western blot. In addition, ROCK2 expression was upregulated and was inversely correlated with miR-139-5p levels in OC tissues. Rescue experiments showed that overexpression of ROCK2 effectively reversed the inhibitory effect of OC cells induced by miR-139-5p. Most interestingly, in vivo studies indicated that miR-139-5p markedly suppressed the growth of tumors by repressing ROCK2 expression in nude mice. Taken together, these findings demonstrated that miR-139-5p plays an important tumor suppressor role in OC by directly binding to ROCK2, providing a novel target for the molecular treatment of OC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app