Add like
Add dislike
Add to saved papers

Quiet echo planar imaging for functional and diffusion MRI.

PURPOSE: To develop a purpose-built quiet echo planar imaging capability for fetal functional and diffusion scans, for which acoustic considerations often compromise efficiency and resolution as well as angular/temporal coverage.

METHODS: The gradient waveforms in multiband-accelerated single-shot echo planar imaging sequences have been redesigned to minimize spectral content. This includes a sinusoidal read-out with a single fundamental frequency, a constant phase encoding gradient, overlapping smoothed CAIPIRINHA blips, and a novel strategy to merge the crushers in diffusion MRI. These changes are then tuned in conjunction with the gradient system frequency response function.

RESULTS: Maintained image quality, SNR, and quantitative diffusion values while reducing acoustic noise up to 12 dB (A) is illustrated in two adult experiments. Fetal experiments in 10 subjects covering a range of parameters depict the adaptability and increased efficiency of quiet echo planar imaging.

CONCLUSION: Purpose-built for highly efficient multiband fetal echo planar imaging studies, the presented framework reduces acoustic noise for all echo planar imaging-based sequences. Full optimization by tuning to the gradient frequency response functions allows for a maximally time-efficient scan within safe limits. This allows ambitious in-utero studies such as functional brain imaging with high spatial/temporal resolution and diffusion scans with high angular/spatial resolution to be run in a highly efficient manner at acceptable sound levels. Magn Reson Med 79:1447-1459, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app