Add like
Add dislike
Add to saved papers

Alterations of expression of inflammation/immune-related genes in the dorsal and ventral striatum of adult C57BL/6J mice following chronic oxycodone self-administration: a RNA sequencing study.

Psychopharmacology 2017 August
INTRODUCTION: Non-medical use of prescription opioids such as the mu opioid receptor (MOP-r) agonist oxycodone is a growing problem in the USA and elsewhere. There is limited information about oxycodone's impact on diverse gene systems in the brain.

OBJECTIVES: The current study was designed to examine how chronic oxycodone self-administration (SA) affects gene expression in the terminal areas of the nigrostriatal and mesolimbic dopaminergic pathways in mice.

METHOD: Adult male C57BL/6J mice underwent a 14-day oxycodone self-administration procedure (4 h/day, 0.25 mg/kg/infusion, FR1) and were euthanized 1 h after the last session. The dorsal and ventral striata were dissected, and total RNAs were extracted. Gene expressions were examined using RNA sequencing.

RESULT: We found that oxycodone self-administration exposure led to alterations of expression in numerous genes related to inflammation/immune functions in the dorsal striatum (54 upregulated genes and 1 downregulated gene) and ventral striatum (126 upregulated genes and 15 downregulated genes), with 38 upregulated genes identified in both brain regions.

CONCLUSION: This study reveals novel neurobiological mechanisms underlying some of the effects of a commonly abused prescription opioid. We propose that inflammation/immune gene systems may undergo a major change during chronic self-administration of oxycodone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app