Add like
Add dislike
Add to saved papers

Optimization of Thermolytic Response to A 1 Adenosine Receptor Agonists in Rats.

Cardiac arrest is a leading cause of death in the United States, and, currently, therapeutic hypothermia, now called targeted temperature management (TTM), is the only recent treatment modality proven to increase survival rates and reduce morbidity for this condition. Shivering and subsequent metabolic stress, however, limit application and benefit of TTM. Stimulating central nervous system A1 adenosine receptors (A1 AR) inhibits shivering and nonshivering thermogenesis in rats and induces a hibernation-like response in hibernating species. In this study, we investigated the pharmacodynamics of two A1 AR agonists in development as antishivering agents. To optimize body temperature (Tb ) control, we evaluated the influence of every-other-day feeding, dose, drug, and ambient temperature (Ta ) on the Tb -lowering effects of N6 -cyclohexyladenosine (CHA) and the partial A1 AR agonist capadenoson in rats. The highest dose of CHA (1.0 mg/kg, i.p.) caused all ad libitum-fed animals tested to reach our target Tb of 32°C, but responses varied and some rats overcooled to a Tb as low as 21°C at 17.0°C Ta Dietary restriction normalized the response to CHA. The partial agonist capadenoson (1.0 or 2.0 mg/kg, i.p.) produced a more consistent response, but the highest dose decreased Tb by only 1.6°C. To prevent overcooling after CHA, we studied continuous i.v. administration in combination with dynamic surface temperature control. Results show that after CHA administration control of surface temperature maintains desired target Tb better than dose or ambient temperature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app